SCASNOW

小動物マイクロサンプリング時の微量生体試料分析技術 ー非臨床毒性試験での実施例-

大阪ラボラトリー 仁井 一夫・公平 陽子

1 はじめに

マイクロサンプリングは、薬物やその代謝物の薬物動態評 価において、血液採取量をごく微量(一般的には50 µL以下) にすることで、評価動物への負担を大幅に軽減する手法です。 毒性試験へのマイクロサンプリングの適用により、サテライト 動物の3Rs [Reduction (削減), Refinement (改善), Replacement (代替)] への貢献とともに、同一個体での毒性 と薬物暴露量評価を可能とし、より直接的な毒性評価への活用が 期待されています。

現在、ICH S3A(トキシコキネティクスに関するガイダンス) においてマイクロサンプリングに関するQ&Aの作成が進められて おり、日米欧で本技術の活用が益々推進されています。

当社では、株式会社イナリサーチのご協力により、マイクロ サンプリングで得られた微量血漿(2.5 µL)を用いた薬物濃度分 析の確立に取り組みました。本稿では、マイクロサンプリングを 適用した毒性評価時の血漿中濃度分析事例を紹介致します。

2 マーモセットにおけるバルサルタンの血漿中薬

2.1 分析法の確立

物濃度分析

マーモセット血漿にバル サルタンを添加した試料 2.5 µLを用いて, 図1に示 したフローにより前処理 を行い、LC-MS/MSにて バルサルタン濃度を定量 しました。

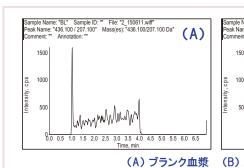

選択性(図2),同時再 現性(表1)共に良好な結 果が得られました。

図1 試料前処理法

2.2 血漿中薬物濃度分析

マーモセットにバルサルタンを経口投与(200 mg/kg/day) し、無麻酔下尾静脈から経時的に採血(50 µL)後(株式会社イナ

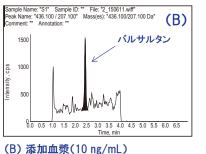


図2 選択性の検証(定量下限濃度のバルサルタンのクロマトグラム)

100000 ●200 mg/kg(雄, n=3) ●200 mg/kg(雌, n=3) (mean±S.D.) 10000 1000 12 24 20 時間(hr)

図3 マーモセットの血漿中濃度測定結果

表 1 分析方法の同時再現性

添加濃度 (ng/mL)	真度 (%)	精度 (%)
10.0	108.5	10.4
20.0	104.3	6.9
1000	105.7	2.4
8000	89.7	1.0

表 2 長期保存安定性

凍結保存したマーモセットの検体で評価

採血	定量値 (ng/mL)		変化率
(h)	初回測定	202 日 保存後	(%)
24h	174	172	-1.1
24h	573	540	-5.8
8h	1560	1510	-3.2
8h	5780	6200	7.3
8h	7990	8860	10.9
8h	6130	6440	5.1
	ポイント (h) 24h 24h 8h 8h 8h	採血 ポイント (h) 初回測定 24h 174 24h 573 8h 1560 8h 5780 8h 7990	採血 ポイント (h) 初回測定 202日 保存後 24h 174 172 24h 573 540 8h 1560 1510 8h 5780 6200 8h 7990 8860

変化率(%)=(保存後の定量値-初回測定の定量値) / 初回測定の定量値× 100

表 3 凍結融解安定性

o, to to pe chilipotete carina						
保存期間	保存条件	容量 (µL)	定量値 (ng/mL)	定量値の 平均値 (ng/mL)	変化率 (%)	
Initial	_		21.3 20.9	21.1	_	
	1 回	5	22.4	22.4	6.2	
		10	23.2	21.9	3.8	
			20.5			
		15	22.6	21.9	3.8	
凍結融解			21.1	21.9		
/木市的5月十		5	23.1	23.1	9.5	
		10	20.1	21.2	0.5	
		10	22.3	21.2		
		15	20.6	21.4	1.4	
	15	22.1	21.4	1. 4		

変化率 (%) = (凍結融解後の定量値 -Initial の定量値) /Initial の定量値× 100

リサーチで実施),血漿2.5 µLを用いて分析した結果,バルサル タンの経時的な全身的暴露を評価することができました(図3)。

血漿が微量であるため保存中及び使用中の乾燥による濃縮が懸 念されましたが、長期保存安定性(表2)、凍結融解安定性(表3)、 室温保存安定性(表4)のいずれも変化率が±15.0%以内と 良好な結果が得られました。また、ISR (Incurred Sample Reanalysis (定量値の再現性確認のため、異なる日に別の分析単 位で投与後試料を再分析すること) も実施し、ガイドラインの基準1) (乖離度: ±20%以内)を満たすことができました(表5)。

3 ラット、マウスにおけるエリスロマイシンの血漿 中薬物濃度分析

ラットおよびマウスにエリスロマイシンを経口投与(20,60,200 mg/kg) し, 無麻酔下尾静脈から採血(40 µL)後(株式会社イナリ サーチで実施), その血漿 (2.5 µL) を用いて分析しました。いずれ の種, 用量においてもマイクロサンプリングと通常法 (0.5 mL採血 を使用) 間で、血漿中エリスロマイシン濃度は同等でした(表6)。

測定機器 HPLC: Nexera X2システム(島津製作所) MS: TripleQuad 6500 (AB Sciex)

4 おわりに

マイクロサンプリング技術の活用は、前述の3Rsへの寄与や同 一個体における毒性-曝露評価はもとより、医薬品開発、特に探索 段階における被験物質使用量の大幅な削減も期待できます。当社 は本稿で紹介したマイクロサンプリングでの微量試料中薬物濃度 分析サービスによりそのニーズにしっかりと応えてまいります。

表 4 室温保存安定性

室温で 24 時間保存した検体で評価

動物番号	採血ポイント	定量 (ng	変化率	
劉初 留写	(h)	初回測定	室温保存 24 時間後	(%)
2M01	2	59900	53300	-11.0
∠IVIU I	8	2450	2510	2.4
2M03	0.5	49100	46100	-6.1
211103	24	2030	2150	5.9
2F01	0.5	15200	13700	-9.9
<u> </u>	8	1890	1690	-10.6

変化率 (%) = (室温保存後の定量値 - 初回測定の定量値) / 初回測定の定量値× 100

表5 ISR

定量値の再現性確認のため、異なる日に投与後試料を再分析

投与群	動物番号	採血 ポイント (h)	定量値 (ng/mL)		乖離度
7又一十			初回測定	ISR 値	(%)
	2M03	0.5	69300	62900	-9.7
200 mg /kg		8	1950	1900	-2.6
(Day 1)	2F02	0.5	84600	79600	-6.1
		24	2700	2540	-6.1

乖離度 (%) = (ISR 値 - 初回値) / 初回値と ISR 値の平均値× 100

文 献

1) 薬食審査発0711第1号「医薬品 開発における生体試料中濃度測 定法のバリデーションに関する ガイドライン」について(厚生 労働省医薬食品局審査管理課, 平成25年7月11日)

表 6 通常法とマイクロサンプリングの比較

通常法 (0.5 mL 採血) とマイクロサンプリング (40 µL 採血) の比較

ラット					
投与量	動物No.	投与後, 定量値(再現性		
(mg/kg)	里 <i>川</i> 1/1/1110.	0.5 mL 採血	40 µL 採血	(%)	
	CD1M04	5.99	6.45	7.4	
20	CD1M05	3.90	3.81	-2.3	
	CD1M06	8.22	7.91	-3.8	
	CD2M04	106	91.5	-14.7	
60	CD2M05	55.4	63.1	13.0	
	CD2M06	38.4	37.3	-2.9	
	CD3M04	378	383	1.3	
200	CD3M05	381	321	-17.1	
	CD3M06	354	331	-6.7	

マウマ

177					
投与量	動物No.	投与後 定量値(再現性		
(mg/kg)		0.5 mL 採血	40 µL 採血	(%)	
	CD4M10	1.18	1.21	2.5	
20	CD4M11	0.438	0.418	-4.7	
	CD4M12	0.643	0.698	8.2	
	CD5M10	14.0	12.4	-12.1	
60	CD5M11	2.37	2.00	-16.9	
	CD5M12	11.3	11.8	4.3	
	CD6M10	205	184	-10.8	
200	CD6M11	98.1	100	1.9	
	CD6M12	161	169	4.8	

再現性 (%) = $(40 \, \mu L \,$ 採血時定量値 $-0.5 \, mL \,$ 採血時定量値 $) / 定量値の平均値<math>\times 100$

(にい かずお) 大阪ラボラトリー

公平 陽子 (こうへい ようこ) 大阪ラボラトリ-