

In vitro探索的安全性試験サービス

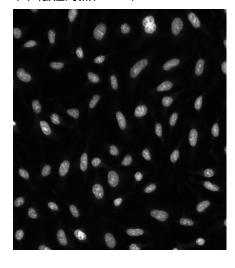
●哺乳類細胞を用いた in vitro 小核試験

TN467

In Vitro Micronucleus Test Using Mammalian Cell

[概 要]

創薬段階における毒性スクリーニング試験の1つである *in vitro* 小核試験は、化合物の染色体の構造異常・数的異常誘発能の有無を評価するための有用な方法です¹⁾。当社では新生チャイニーズハムスター肺由来細胞株(以下、CHL/IU 細胞)を用いた *in vitro* 小核試験の受託サービスを実施しています。細胞イメージアナライザー ArrayScan™ VTI(サーモフィッシャーサイエンティフィック社製)を用いて画像取得から解析までを自動化することで、従来の顕微鏡を用いた目視評価に比べ、より短時間に客観的で均一性の高い結果の取得が可能です。以下に、当社での評価系の検証事例を示します。


Keywords: 安全性試験、遺伝毒性

[事 例]

播種後一晩培養した CHL/IU 細胞に、OECD ガイドライン $^{1)}$ において陽性対照として推奨されている化合物(マイトマイシン 1 C、シクロホスファミド、ベンゾ(a)ピレン、コルヒチン、ビンブラスチン)と染色体異常を誘発しない化合物(アミオダロン) $^{2)}$ を短時間処理法と長時間処理法にて曝露しました。短時間処理法は 6時間、外因性の代謝活性化系である 1 S9 存在下(短時間・S9 1 (知時間・S9 1))と非存在下(短時間・S9 1))で処理した後培地交換し、長時間処理法は 24 時間、S9 非存在下(長時間・S9 1) で処理しました。エタノールによる細胞固定後、Hoechst33342 による核の蛍光染色を行い、ArrayScan 1 VTI により画像解析を行いました。

取得された画像例を以下に示します(図 1;短時間・S9(-)にて実施)。機器の画像解析アルゴリズムにより、細胞核(青矢印)と小核(赤矢印)の数、および小核頻度(細胞核に対する小核出現の割合)を算出し評価しました。各参照化合物の小核頻度の結果は、OECD ガイドライン 1)や文献 2)と同等の結果を示しました(表 1)。

(A) 陰性対照(DMSO)

(B) マイトマイシン C

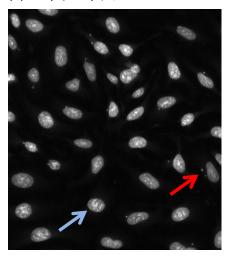


図 1 ArrayScan[™] VTI より得られる画像例

表 1 参照化合物における小核頻度の比較

カテゴリー	化合物名	小核頻度(%)		
	(実施濃度)※1	短時間•S9 (−)	短時間•S9(+)	長時間•S9(-)
陰性対照	DMSO のみ	0.36±0.02	0.49±0.13	0.70±0.01
染色体異常	アミオダロン	0.34±0.14	1.50±0.21	0.24±0.14
誘発なし	(31 μ M)			
代謝活性化なしで	マイトマイシン C (1.5 μM)	11.14±0.13	1.63±0.06	11.10±0.15
活性のある染色体				
構造異常誘発物質				
代謝活性化を必要 とする染色体 構造異常誘発物質	シクロホスファミド	0.29±0.01	6.43±0.06	0.28±0.03
	(36 μM)			
	ベンゾ(a)ピレン	0.22±0.01	5.20±1.27	0.28±0.25
	$(250 \mu M)$			
異数性誘発物質	コルヒチン	2.76±0.98	0.56±0.23	23.97±0.54
	(0.98 μM)			
	ビンブラスチン	0.63±0.44	0.38±0.18	24.55±1.61
	(0.063 μM)			

※1:細胞生存率が50%以上を示した濃度を記載

当社では、信頼性の高い評価系での試験を提供しております。 試験で使用する陽性対照など、試験実施に関する内容はお気軽にご相談ください。

[引 用]

経済協力開発機構(OECD)
 化学物質の試験に関するガイドライン 哺乳類細胞を用いた *in vitro* 小核試験
 http://www.oecd-ilibrary.org/docserver/download/9714561e.pdf

2) D. Diaz et al, Evaluation of an automated *in vitro* micronucleus assay in CHO-K1 cells. (2007) *Mutation Research* **630**: 1-13

[関連リンク]

tn465 Balb/c 3T3 細胞を用いた in vitro 光毒性試験

https://www.scas.co.jp/technical-informations/technical-news/pdf/tn465.pdf

お問い合わせ先 技術事例

: https://www.scas.co.jp/contact/ (株式会社住化分析センター)
: https://www.scas.co.jp/technical-informations/technical-news/