SiCパワー半導体のプロセス評価技術

筑波事業所 兼 技術開発センター 中津 和弘 / 電子事業部 兼 営業本部大阪営業所 古田 倫明

1 はじめに

今日,世界的に省エネルギー・新エネル ギーの開発機運が高まり,電力消費量の削 減も大きな課題となってきている。中でも パワー半導体は,家電,コンピュータ,自 動車,鉄道などあらゆる機器に幅広く利用 されており,効率的な電気エネルギーの制 御を行う上で重要な役割を果たしている。 しかし,これまでのパワー半導体は Si (シ リコン)を用いたデバイス製品が中心で あったが,Si の物性で決まる理論的な性 能限界に近づいており,今後,大幅な性能 向上を期待することは難しい。

SiC パワー半導体は Si パワー半導体に 比べて電力損失を 70 ~ 90%削減できる と予想され、さらに 1kV 以上の高耐圧性 能を有することから各種産業用として期待 が高まっている。

SiC パワー半導体の製造プロ セスと評価技術

SiCパワー半導体の製造技術は①材料 技術(基板,エピ),②プロセス技術(イ オン注入,ゲート形成,電極形成,パッシ ベーションなど)および③実装技術に大別 できる。その内容はSiパワー半導体の製 造技術と類似した点も多い反面,エピ技 術,拡散(アニール)技術,酸化技術など では従来のSiパワー半導体での技術を活 用することが出来ないため,製造技術の最 適化が求められている。

SiCパワー半導体の製造プロセスの最 適化を実現するための評価技術は、従来 のSiパワー半導体で用いられた手法に加 え、SiCならではの結晶性や欠陥の評価 および酸化膜や金属膜とSiCとの接合界 面における構造解析などが重要とされる。 表1にSiCパワー半導体評価で用いられ る主な分析手法を示す。特に結晶性や欠 陥の評価をミクロまたはマクロの観察視 野で行う透過電子顕微鏡や分光分析によ る解析が特徴として挙げられる。

当社では各種分析手法の特徴を活かし ながら、SiCパワー半導体のプロセス評価 技術の向上に努めている。今回、従来の Siを用いたプロセスと異なり、且つ今後 の製造プロセスの重要な鍵となる①イオ ン注入技術(注入→アニール)および② ゲート形成技術(酸化)についての評価 事例を紹介する。

3 SiC パワー半導体の評価事例 3.1 イオン注入および高温アニール処理 による二次欠陥の評価

SiC パワー半導体におけるイオン注入 プロセスでは①高ドーズによるアモルファ ス化防止のための高温注入, ②残留欠陥 解消のための高温アニールが必要とされ る。ここではイオン注入後のアニール処理 温度と二次欠陥の形成状況との関係を評 価した事例を紹介する。試料は n-SiC エ ピ膜 /n+ SiC 基板 (<11-20> に 4° off した基板を使用) に p 型ドーパントである AI をドーズ量:5×10¹⁴atoms/cm², エネルギー:300keV にて高温注入(基 板温度:500℃)した後,1,600℃およ び 1,750℃でそれぞれ高温アニール処理 したものである。なお、高温アニール処理 は、SiC 表面のグラファイト化を防止する ために約 20nm の酸化膜(SiO₂)を成膜 した後に実施した。

表1 SiCパワー半導体評価で用いられる主な分析手法

製造プロセス技術	主な技術課題	評価項目	主な分析手法
基板技術	結晶欠陥の低減 低抵抗化	結晶欠陥	SEM,(S)TEM, CL, PL
		歪み・応力	RAMAN, XRD, X 線トポグラフ
		結晶性	(S)TEM, 電子線回折
エピ技術	均一性の確保 スループット向上	膜厚	SEM,(S)TEM
		ドーパント濃度	SIMS
		基板界面	(S)TEM
イオン注入技術	残留欠陥解消 表面荒れの低減	注入分布	SIMS
		残留欠陥	SEM,(S)TEM
		結晶性	(S)TEM, RAMAN, ESR
ゲート形成技術	界面準位密度低減 酸化膜の信頼性向上	界面不純物	SIMS
		界面状態	(S)TEM, EELS, XPS
		界面欠陥	ESR
電極形成技術	低抵抗化 プロセスの低温化	組成変化	AES, XPS
		表面汚染・状態	AES, XPS, TOF-SIMS
		表面形状	SEM, AFM
		断面形状	SEM,(S)TEM

SEM:走査電子顕微鏡 (S) TEM:(走査型)透過電子顕微鏡 CL:カソードルミネセンス PL:フォトルミネセンス RAMAN:ラマン分光 XRD:X 線回折 SIMS:二次イオン質量分析 EELS:電子エネルギー損失分光法 XPS:X 線光電子分光 ESR:電子スピン共鳴 AES:オージェ電子分光 TOF-SIMS:飛行時間型二次イオン質量分析 AFM:原子間力顕微鏡

図1(a) SIMSによるSiC中のAI濃度分布

図1(b) SIMSによるSiC中のAI濃度分布「図1(a)矢印領域の拡大」

図1(a)に二次イオン質量分析(SIMS) によって得られたイオン注入およびアニー ル処理後のAIの深さ方向濃度分布を示す。 SiC中ではドーパントの拡散係数が小さい ため、アニール処理による分布の変化は Si中の場合と比較して小さい。SiC中の p型ドーパントの拡散係数はBよりもAI の方が約2桁小さく、またm軸方向よ りもc軸方向の方がさらに小さいことか ら¹⁾、水準間でのAI濃度分布の変化はわ ずかとなったが、図1(b)中に示す拡大図 より、注入のみと比較して1,750℃より も1,600℃の方の濃度変化が大きいこと が確認された。

次に走査型透過電子顕微鏡(STEM) を用いて断面観察した結果(暗視野像) を図2に示す。イオン注入のみではほと んど欠陥構造は認められないが、アニー ル処理によって顕著な欠陥構造(二次欠 陥)が認められた。AIの深さ方向濃度分 布と比較して欠陥構造は濃度のピーク付 近(→)を中心に形成されていることが 判る。また、画像解析結果(表2)から この欠陥構造はアニール処理温度の変化 (1,600℃→1,750℃)に伴い、凝集が 起きていると推察される。

さらに、この欠陥部について <11-20> 方向より HAADF(高角度散乱暗視野) -STEM による高倍率観察を実施した。 HAADF-STEM は、TEM の干渉像よりも 像解釈が容易であり、特に当社所有の装 置(球面収差補正機能を装備)は、O.1nm 以下の分解能を有しているため、原子配 列の観察が容易である。図3に示した欠 陥部の高倍率観察においても4H-SiCの 積層構造(〇印は Si 原子)を有している ことが分かった。また、欠陥の分布状況は (0001)面に対して 50~55°の角度で 発生していることから、アニール処理に よって発生した欠陥構造(二次欠陥)はドー パント(AI)が特定の面において格子間原 子となり点欠陥等の結晶の歪みが発生し たものであると考えられる²⁾。

図3 HAADF-STEMによる欠陥部の断面観察 結果(〇:Si原子を示す)

図2 明視野STEMによる断面観察結果

表2 暗視野STEM像の画像解析 による欠陥領域の面積比

アニール 処理温度	欠陥領域の 面積比	
1,600°C	7.1%	
1,750°C	5.3%	

FRONTIER REPORT

図4 AFMによるSiC表面形状の観察結果

実際の製造プロセスにおいて、アニー ル条件の最適化には残留欠陥に加え、表 面荒れの制御も重要である。図4および 表3にアニール前後の表面形状を原子間 力顕微鏡(AFM)で観察した結果を示す。 なお、アニール後の試料は表面酸化膜(約 20nm) を除去した後に AFM 観察を実施 した。注入のみではステップバンチング(結 晶成長中にステップ列が合体して束になり 巨大化したもの)の形成が確認され,アニー ル処理によって表面荒れが起きているこ とが判る。表面荒れの程度は、アニール温 度の変化(1,600℃→1,750℃)に伴い, 大きくなっており、温度上昇によって SiC 表面からの Si 原子の放出が起きているも のと推察される³⁾。

この他にプロセス条件の最適化には、注 入されたドーパントの活性化向上も重要 である。ラマン分光(RAMAN)は結晶多 形の評価に加え、キャリア濃度を評価する ことも可能である。昨年、当社に導入され たイメージング RAMAN は高い空間分解 能(350nm)で、且つ新しい光学系によ る高速マッピングが可能である。今後は本 特徴を活かし、パターン形成されたデバ イスにおけるキャリア濃度の面内均一性の 評価にも取り組んでいく予定である。

今回の評価事例は二種類のアニール条 件についてのみの実施であったため、欠陥 構造(二次欠陥)とアニール条件との相 関について十分な議論はできないが、様々 なプロセス条件の試料を分析することに よって, 最適化のための指標が求められる ものと考えられる。

3.2 MOSFET ゲート酸化膜の評価

SiC-MOSFET (金属酸化膜半導体型電 界効果トランジスタ)を実現するためには、 高チャネル移動度の達成が不可欠であり, 最適なゲート酸化膜形成方法の研究が進 められている。ゲート酸化膜形成方法の 違いはチャネル移動度や酸化膜信頼性に 大きな影響を与える。シリコン面に対して は酸素(O₂)を使用したドライ酸化やー 酸化窒素(NO)または一酸化二窒素(N₂O) を使った酸窒化、カーボン面に対しては O₂と水素(H₂)の燃焼によるウェット酸 化など結晶方位面に応じた様々な酸化方 法が提唱されている4)。ここでは製法が異 なる二種類のゲート酸化膜について酸化 膜の膜質および界面構造に関する評価事 例を紹介する。

Rms (nm)

0.25

0.31

0.38

試料は n-SiC エピ膜 /n+ SiC 基板

図6 化学エッチング処理後の同時角度分解XPS測定

図7 N₁₅のナロースペクトル

(<11-20>に4° off した基板を使用)上 に酸化膜(43nm)を形成したものと チャネル移動度の改善として窒化処理を 施した酸化膜(43nm)を形成したもの である。窒化処理を施した酸化膜中およ びSiC界面での窒素(N)濃度を評価す るため、SIMS 分析を行った。試料構造が SiO₂/SiC 系であるため、マトリックス効 果(母材の違いによる感度変化)が現れ るが、SiO2系および SiC 系それぞれの感 度係数を用い、さらに界面における感度補 正を実施した。図5に示す測定結果から 窒化処理によって SiO₂/SiC 界面付近で Nの偏析が確認された。一般にSiO₂/SiC 界面における Nは界面付近の欠陥を N終 端させることにより、 界面欠陥の低減に寄 与しているものとされる5)。

これら界面付近の窒化状態を評価する ため、X線光電子分析分析(XPS)を実 施した。光電子の情報深さが約5~6nm であるため、界面付近の評価ができるよ うに酸化膜が約 3nm になるまで化学エッ チング処理を実施した後に測定を行った。 さらに図6に示すように窒化状態を深さ 方向に評価するため、同時角度分解 XPS 測定を実施した。同時角度分解 XPS は X 線照射によって発生した光電子を脱出角 度別に検出器(エネルギー分光器)へ取り 込むことが可能であり, 非破壊による試料 表面の状態解析を深さ方向に行うことが できる。図7にN₁₅のナロースペクトル および図8にN₁₈の検出強度と検出角度

との関係を示す。図8からSiO₂/SiC界 面付近ではシリコン窒化物(Si₃N₄)を形 成しており、図7からSi₃N₄はSiO₂/SiC 界面付近で最大濃度になっている状況が 推察される。

今回の評価事例に用いたO。酸化および 窒化処理を行った酸化膜では、SIMS 分 析によるN濃度分布の他、同時角度分解 XPS による深さ方向への界面状態の知 見が得られた。このようにゲート酸化膜 の高精度な界面制御技術に対しては、適 切な表面分析手法を用いることで正確な 情報を得ることができる。今後はさらに SiO₂/SiC 界面に存在するとされる遷移層 の解明のため、STEM-EELS (EDX) に よる nm レベルの組成解析や電子スピン 共鳴(ESR)を応用した電子移動性評価 にも取り組んでいく予定である。

4 おわりに

世界的に電力削減や環境負荷低減が求 められる中,電力デバイス,特にSiCパワー 半導体への期待が高まり、製品化に向けた 技術開発もますます活発化してきている。 一方で SiC ならではの技術課題も多く残 されているのも事実であり、当社は、特徴 ある評価技術力を高めながら、これら技術 課題の解決に貢献していきたいと考えて いる。

文 献

- 1) S. I. Soloviev et al.: "Aluminum and Boron Diffusion into (1-100) Face SiC Substrates", Mater. Sci. Forum 389-393 (2002) 557
- 2) T. Kimoto, S. Nakazawa, K. Fujihira, T. Hirano, S. Nakamura, Y. Chen, K. Hashimoto and H Marsunami Mat Sci Forum, 389 (2002) 165
- 3) Yuusuke Hayashi, Ryu Hasunuma and Kikuo Yamabe, Generation and Growth of Atomic-scale Roughness at Surface and Interface of Silicon Dioxide Thermally Grown on Atomically Flat Si Surface, Key Eng. Mat. Vol. 470 (2011) 110-116
- 4) J. Rozen, S. Dhar, S. T. Pantelides, L. C. Feldman, S. Wang, J. R. Williams, and V. V. Afanas'ev, Appl. Phys. Lett. Vol. 91 (2007), 153503
- 5) 特願 2010-217756号 「炭化珪素半導体の製 造方法及び電子デバイスの製造方法」

中津 和弘 (なかつ かずひろ) 筑波事業所 兼 技術開 発ヤンタ・

古田 倫明 (ふるた ともあき) 電子事業部 兼 営業本 部大阪営業所