高分子材料の内部構造観察

千葉事業所 岡村 稔

1 はじめに

高分子材料の性能や機能を向上さ せるには,その構造と物性の相関関 係を知ることが大切である.最近の 機器分析の発展により,微細な構造 までも明らかになり,立体規則性や, 分子量,異性構造など分子鎖の一次 構造の解析はますます深く広がって きている.

なお,分子鎖が集合した高次構造 の解析,特に,nmからµm領域の ラメラ晶や球晶構造を形態的に観察 することが可能な透過型電子顕微鏡 (Transmission Electron Microscope:TEM)は,より高性能な材 料開発において最適な解析手法のひ とつである.

ここでは, TEMによる高分子材料 の内部構造の観察技術について紹介 する.

2 観察手順

ポリオレフィンなどの飽和系高分 子材料について,内部構造を観察す るための操作フローを図1に示した.

通常,ポリプロピレン(PP)のよ うな高分子材料では,バルク試料を

図1 高分子材料の構造観察フロー

染色固定後,超薄切片作成装置であ るウルトラミクロトームで凍結切断 して,得られた薄片をTEMで観察す るのが一般的である.

3 TEM

TEMの基本的な構造は,電子を発 生させそれを加速する電子銃とアノ ード,試料面上に電子線を収束させ る照射系,試料移動および試料の傾 斜回転などの機構を有する試料室, 試料情報を拡大する結像系,および これらを正確に作動させるバックア ップシステムとして電気系,真空系, 水冷系,空圧系からなる.(図2)

TEMの原理は基本的に光学顕微鏡 と類似しており,TEMではフィラメ ントからの放出電子を光源にしてい ることと,電子レンズを使用してい ることが異なる点である.

一般にTEMの分解能は次の式で
与えられる.¹⁾

 $d = 0.4 C s^{3} + 0.61 /$

Cs:球面収差, :開き角, :波長 また,電圧Vと波長 との間には 以下の関係式がある.²⁾

12.26

 $V^{1/2}$ (1 + 0.9788 × 10⁻⁶V)^{1/2}

このことから,分解能を向上させ るためには,加速電圧を上げて を 小さくすればよいが,高分子材料な どは比較的加速電圧が低い方が,位 相差コントラストが増加し良好な場 合が多く,一般に生物系と同様に 100kV程度を選ぶ.

図2 TEMの装置概要

4 包埋固定

高分子材料の内部構造を良好に観 察するためには,ウルトラミクロト ームにて最適な超薄切片を得ること が何よりも必要不可欠であるが,フ ィルム状の試料や繊維状の試料など は柔らかく,そのままではウルトラ ミクロトーム本体に安定した状態で 固定することはできない.そこでエ ポキシ系樹脂などを用いて包埋固定 し,試料を安定なブロック状にする 必要がある.

包埋に使用する樹脂は,この他に アクリル系なども利用されるが,材 料の組成や観察目的にあわせて,包 埋樹脂や包埋条件を選定することが 大切である.通常,エポキシ系包埋 材を使用する場合の調整条件はLuft 法³⁾などが汎用的である.

包埋時のポイントとしては次の通 りである.

重合後の硬さは試料と同程度 重合熱は低く 体積変化は小さく 試料ダメージは少なく

図3 ウルトラミクロトームの装置概略図

接着強度は高く 重合は短時間

5 超薄切片作成

5.1 薄膜化の手法

バルク試料のTEM観察を行うに は,電子線が試料中を透過でき,な おかつ,良好なコントラストと構造 を確認するのに最適な薄膜にする必 要がある.

試料を薄膜化するには,次のよう な手法がある.

電解研磨法

試料金属を陽極として電解し薄膜 にする手法であり,金属材料の観察 に適している.

イオンミリング法

あらかじめ機械研磨で薄くした試 料にArイオンを照射して薄片化する 手法で,半導体積層膜などの観察に 用いられる.

FIB(Focused Ion Beam)法

Gaイオンビームを試料表面上に集 束させスパッタエッチングする手法 で,半導体デバイス中の欠陥などサ ブミクロンでの位置精度を要求する 試料に適している.

ミクロトーム法

ガラスナイフやダイヤモンドナイ フなどで試料薄片を作成する手法で あり(図3),前述のような試料作成 法では加工できない高分子材料など に最適である.

5.2 凍結超薄切片作成法

クライオウルトラミクロトームを 使用して,材料をナイフと共にガラ ス転移温度(Tg)以下に冷却して固 定する方法で,高分子材料の固定方 法として広く利用されている.一般 的に高分子材料の多くはTgが室温以 下であり,そのまま薄切するのは難 しい.そのため,液体窒素のような冷 媒を用いて固定するか,6項で後述す るような染色固定の手法がとられる.

6 染色処理

6.1 染色法の種類

ー般に高分子材料のほとんどはC, H, N, O等の軽元素で構成されている ため電子線の透過性が良く,そのま までは内部構造を認識するだけのコ ントラストを得ることは難しい.

そこで,電子線散乱性能の高い重 金属で染色固定して識別する方法が 用いられ,これまでに高分子材料に 適した染色法の開発が行われてきた. (表1)

超薄切片作成の工程と染色処理の 工程の順序としては,バルク試料を 染色固定後に超薄切片を作成する方 法と,先に超薄切片を作成した後, 薄片について染色固定を行う方法の ふた通りがある.

前者は,あらかじめ内部構造を染

表1 高分子材料の染色法

色剤により固定するので,材料の組 成によっては凍結の必要がなく室温 での薄切が可能な場合もある.また, 後者は,染色反応に掛かる時間が短 時間ですむことと,染色反応領域が 試料表面からわずかしかない組成の 材料には適している.

6.2 四酸化オスミウム⁴⁾

不飽和系高分子材料に対して有効 な染色剤で, - C H-= C H - (二重 結合)に対して選択的に反応する. この架橋反応により重金属元素の導 入と分子鎖の拘束が起こるためコン トラストの付与と同時に電子線ダメ ージを軽減する.

この染色剤はアクリロニトリル -ブタジエン - スチレンブロック共重 合体(ABS)やハイインパクトポリス チレン(HIPS)等のポリブタジエン 部分に反応し,例えば図4に示した ハイインパクトポリスチレンの例で は,特徴的なポリブタジエン粒子の サラミ構造を観察することができる.

6.3 四酸化ルテニウム 5)

四酸化ルテニウムは四酸化オスミ ウムよりも酸化力が強く,不飽和結 合を持たないポリオレフィン等の飽 和系高分子材料に対して特に有効で, 結晶性高分子の非晶部の酸化反応と 架橋反応により重金属の導入が起き, コントラストを得ることができる.

この染色剤を使用してポリプロピレン / 低密度ポリエチレンブレンド

染色剤	官能基の種類	染色可能な材料
四酸化オスミウム⁴)	- C H = C H -	ポリブタジエンなどの不飽和系ポリマー
四酸化ルテニウム ⁵⁾	- C H ₂ - C H ₂ -	ポリスチレン , ポリオレフィン , ポリエステルなど
りんタングステン酸 6)	- N H ₂	ポリアミド

図4 HIPS中のポリブタジエン粒子のサラミ構造

図5 PP / LDPEブレンドの観察例

ポリマー (PP / LDPE)を観察した 例を図5に示した.この例では,PE 粒子が染色されているのと,PPと PE中のラメラ晶構造についても観察 されている.

また,染色度合いは高分子材料の 種類によって異なるので,多成分系 のプレンド組成物やポリマーアロイ の染め分けも可能となる.

なお,四酸化オスミウム,四酸化 ルテニウムともに揮発性があり,呼 吸器系,眼に傷害を与えるため,局 所排気設備のある場所で取り扱い, 直接素手で触れないように細心の注 意が必要である.

6.4 りんタングステン酸⁶⁾

- CONHの官能基に対して有効な 染色剤であり,ポリアミドなどを選 択的に染色することが出来る.

この染色剤を用いてポリアミド / ポリプロピレンブレンドポリマー (PA / PP)を観察した例を図6に示 した.この例では,マトリックスの

図6 PP/PAの観察例

図7 過染色によるアーティファクト

ポリプロピレン中にポリアミド粒子 が分散していることがわかる.

7 像傷害

ミクロトームによる加工では原理 的に,試料にせん断応力やねじれ応 力が作用しやすく,薄膜を観察した ときに本来の内部構造ではない人工 生成物を見てしまうことある.この ようなアーティファクト(Artifact) には注意しなくてはいけない.

この他にも,ナイフに由来するナ イフマークやチャターなども構造観 察の傷害になる.

また,四酸化ルテニウムは,酸化 力がかなり強いため,試料最表面で は過染色となりやすく,脆化のため 過度に染色された部分が脱落あるい はひび割れてしまうことがある.図 7は過度の染色によりゴム相が脱落 した例である.

8 おわりに

以上TEMによる高分子材料の内 部構造の観察技術について述べた が, これらは観察手法のひとつにす ぎず, この他に走査型電子顕微鏡 (Scanning Electron Microscope :SEM)や, 原子間力顕微鏡 (Atomic Force Microscope AFM)な どの表面構造を評価する観察技術 も, TEM同様, より性能の高い高分 子材料の開発にはなくてはならない 分析法である.

近年TEMにおいてもPC化が進み, 映像記録媒体としてもイメージング プレート(IP)やスロースキャン CCDなどが用いられ,デジタル映像 として扱えるようになった.これら 装置の進歩により,比較的誰にでも 簡単に写真撮影ができるようになっ たが,前処理の工程はあいかわらず 個人のノウハウに頼るところが多く, まだまだ工夫の余地は残されている. 今後は,これらの分野について系統 的に整備していきたいと考える.

文 献

- 1)医学・生物学電子顕微鏡技術研究会編:よくわかる電子顕微鏡技術、199-203、 (1992)
- 2)上田 良二編:電子顕微鏡,180-182, (1986)
- 3) J. H. Luft : J.Biophys. Biochem, Cytol., 9, 409-414, (1961)
- 4) K. Kato : Polym. Eng. Sci., 7, 38 (1967)
- 5) J. S Trent et al.: Macromolecules, 16, 589 (1983)
- 6) K. Hess et Al.: Kolloid-Z, 168, 37 (1960)

岡村 稔 (おかむら みのる) 千葉事業所